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ABSTRACT 

An apparent discrepancy is noted between Fujikawa's path integral 

analysis of anomalies and the existence of a family of distinct 

solutions to the Thirring model. It is proposed that this family of 

distinct solutions may be obtained in the path integral formalism by 

employing a family of distinct measures for the fermion functional 

integration. The new measures are constructed by means of a 

two-dimensional analog of the Pauli-GUrsey-Pursey transformation, and 

the anomalies are evaluated explicitly for those measures which are 

close to the usual one. 
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I. INTRODUCTION 

Invariances of a classical field theory under continuous 

transformations give rise to conserved currents. In the quantized 

theory these invariances are expressed by the Ward-Takahashi [l] 

identities (WTI's). As is well known, it is possible that a current 

which is conserved in the classical theory is not conserved in the 

quantized theory on account of anomalies [Z]. 

In a series of papers [3-51 Fujikawa has studied the origin of 

WTI's in the framework of the path integral formalism, and has shown 

that both chiral and conformal anomalies have their origin in the 

non-invariance of the path integral measure under the transformation 

associated with the classical symmetry. Fujikawa's analysis has been 

applied to two-dimensional fermion theories: to the Schwinger model, by 

Roskies and Schaposnik [6]; and to the Thirring model, by Ouerksen [7]. 

It is in the context of these applications that the question to which 

the present paper addresses itself arises. 

The Minkowski-spacetime action for the massless Thirring model [8], 

including coupling to a classical external gauge field AII(x), is 

S = J d2x(i?&+e jrAu - $ jl'jV) , 

To the classical action (1.1) there corresponds a one-parameter 

family of inequivalent quantum theories 191. If we call this parameter 

n, the anomaly equations for the vector current jP and the axial current 

jt = $rV75$ may be written as 
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<allj"> = -(n/n).(eapA'-x<aujV>) 
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(alljF> = (E/n).(eE~"a~A~-x<a~j~>) 

where 5 = 1 - n. 

The existence of solutions possessing different WTI's seems to be 

at variance with Fujikawa's unambiguous regularization procedure. We 

propose that the resolution of this apparent paradox lies in a freedom 

of choosing the fermonic path integral measure. This freedom 

corresponds to a two-dimensional counterpart of the Pauli-Gursey-Pursey 

transformation [lo] familiar from four-dimensional field theories. 

To begin, we summarize the application of Fujikawa's method to the 

Thirring model. (The details of the calculation are identical in most 

aspects to the calculation of the chiral anomaly in four-dimensional 

Q.E.D. given in ref. [3]. See appendix B and ref. [7].) 

Under the chiral transformation 

JI •t eiu575 
ji, G-+&2 

lar5r5 

the path integral measure p, 

p q II N(x) d;(x) 

X 

changes in the following manner: 

(1.3) 

(1.4) 

v + p exp[-2i J d2x Tr(a5x5)1 Y (1.5) 
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where "Tr" denotes a sum over a complete set of states. The manner in 

which this sum is to be regulated in uniquely determined by the equation 

of motion for jl, continued to Euclidean spacetime. In the case at hand, 

the Euclidean equation of motion is 

0* = 0 

where 

Dp=iall+B , Bp=eAp+x.j. 
P v 

(1.6a) 

(1.6b,c) 

The anomaly factor Tr(ol575) is evaluated as follows: 

Tr(u5y5) = 2 Tr a5r5 exP 

(1.7) 

2 
= lim a tr J -!L-$ ebiksxy5 exp (- 

M-h5 (257) 

where "tr" indicates simply a sum over Dirac indices. The result is 

“5 
(1.8) 

The value of an integral is unchanged by a change of integration 

variable, provided that any change in the integration measure is taken 

into account by a suitable Jacobian factor--in this case, that Jacobian 

factor is the exponential on the right-hand side of (1.5). We can 

write, for the effect of the change of variables (1.3) on the generating 

functional z = JpevS, 
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O=$-In2 
5 

= z-l J (f& - p g) ems 

= ( -21 G Tr(a5y5)) - ($-) s (1.9) 

Using (l.l), (1.6c), (1.8) and the relation between jp and j[ (see 

appendix A) we find, back in Minkowski spacetime, 

tapjE> = (e/n).(e~""a~A"-x<a~j~>] (1.10) 

The same considerations applied to the gauge transformation 

i0! 
$+e 5 , S+Sie 

-ia* 
(1.11) 

easily show that 

taVjV> = 0 . (1.12) 

Thus, we obtain only the WTI's corresponding to n = 0 in (1.2). 

One might conjecture that the WTI's with n = 0 result simply from 

regularizing the respective Jacobians of the chiral and wwe 

transformations in a manner different from that which was used in (1.7). 

Is it, then, necessary to abandon or modify in an arbitrary manner 

Fujikawa's simple regularizatlon prescription, which has to date been 

applied with some success in a variety of disparate circumstances? We 
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proposed that solutions to the Thirring model with n # 0 may be obtained 

by modifying, not the regularlzation procedure, but the measure n which 

iS subject to regularization. For InI<< we shall explicitly 

demonstrate that this is, in fact, the case. 

II. TWO-DIMENSIONAL SPINOR FORMALISM 

We will find it convenient to work with Weyl spinors which, in two 

dimensions, are single-component objects. Using the Euclidean 

conventions described in appendix A, the Weyl spinors A, p, K, i are 

related to the Dirac spinors JI, ? by 

$ = (i, , 5 = (P,X) . (2.1) 

The Euclidean action for the spinors (2.1) interacting with a vector 

field BP(x) is 

s = SL + SR , (2.2a) 

where 

sL = - J d2x i;DLx , sR = - J d2x ;DRp (2.2b,c) 

Dp=iaptB 
P 

, DL=01~io2. 

R 

(2.2d,e) 

(Computation of the gauge and chiral anomalies using the action (2.2) 

will enable us to obtain the anomalies for the Thirring model as well, 

if we make BP(x) a Lagrange multiplier [7]. See appendix B and 

ref. [7].) 
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Since we shall be considering transformations mixing spinors with 

anti-spinors, we make still another modification in our notation. 

Define the "Weyl bispinors" (Majorana spinors, actually) &, E: 

A 
&= ( ) 

P 

;i 
>,e= * ( 1 ; 

In terms of &, B, 

sL = - J d2x xTgLi , sR = - J d2x ~‘g~p 

where 

go = $( ;L tL) , gR = $( ;, ;R) 

iip=ia -B 
P v 

, CL = 51 ?: ii2 . 

R 

(2.3) 

(2.4a,b) 

(2.4c,d) 

(Note that, for example, Jd2x xiaL;i = t J d2 KiaLx, and 

Jd2x ABE: = - J d2x :BLx, since all the spinors are anticotnnuting 

Grassman objects.) The measure (1.4) may be written as 

pL x 
= II dh(x) , vR = n de(x) . 

X 

(2.5) 

If $I. j, are subject to the infinitesimal gauge and chiral transformation 
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* -3 [l+ial+iagY5)* I u + ;(l-ial+iagYgl 9 

& and B transform as 

i •, (l+igL)& 9 p •, tl+'gR)e 3 

where 

gL = ( ;’ uaL) 3 gR = ( 2 yaR) (2.6e,f ‘) 

cdL = a1 + a5 , ‘YR = a1 - “5 . (2.'%,h ) 

Under a Euclidean Lorentz transformation (x1-x2 rotation) through an 

angle a, & and B transform as 
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(2.6a,b) 

(2.6c,d) 

(2.7) 

eje -iv2 
.e * 

III. MEASURES WITH n # 0 

The most general local linear transformation on &, 8 that commutes 

with Euclidean Poincare transformations is of the form 

&' = HLL , B' = HRB , (3.1) 

where HL and HR are arbitrary 2 x 2 matrices with spacetime-independent 
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entries. This transformation is analogous to the four-dimensional 

Pauli-GUrsey-Pursey transformation; we do not, however, impose any 

constraints corresponding to the constraints imposed on the latter. 

That the transformation (3.1) are not unitary need not worry us here, 

since as we change the anomaly parameter n we are moving between 

theories with inequivalent commutation relations [ll]. 

We now consider theories defined by generating functionals of the 

form (see appendix B) 

z, = J vtp2 e-(s+s2) . 
(3.2) 

S is the action (2.2) constructed out of the original spinors A, 2 as in 

(2,4a,b); p' is a modified measure, 

+~i = f: dA'(x) , I.$ = n $'(x) , 
X 

(3.3) 

given in terms of the modified splnors x', B' defined in eqs. (3.1); and 

S2 is any functional of external fields and/or dynamical fields 

appearing in the integration measure p2, but I@ including $ or y. 

Under the infinitesimal gauge-plus-chiral transformation whose 

action on the original spinors & and B is given by (2.6), &' and B' 

transform as 
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X8 + (l+igi)&’ 9 e’ + (l+isge’ 

where 

!3i = 
-1 

HLgLHL 
-1 

9 gk = HRgRHR I 

(3.4a,b) 

(3.4c,d) 

and the change in the measure (3.3) is 

pi + pi exp[-i J d2x Tr gi] 

pi -f pi exp[-i J d2x Tr gR] . (3.5) 

(We are deali ng in this section with two distinct types of 

transformations, and we pause here briefly to emphasize the difference 

between the roles that each one plays. 

At the outset, we select once and for all a pair of matrices HL, HR 

to use in (3.1). That gives us a pair of transformed spinors &', B' 

which we use in the transformed measure +I'. Path integration with this 

transformed measure yields the quantum theory defined by the generating 

functional Z' in Eq. (3.2). 

Having thus constructed a quantum theory, we then compute the WTI's 

for this theory in the usual way, by performing the infinitesimal 

change-of-integration-variables which is expressed in terms of the new 

spinors x', B' by Eqs. (3.4).) 

Using (2.4) and (3.1) we express the action (2.2) in terms of X', 

I . 
e * 
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sL = - J d2x hfTq &' , sR = - J d2x elTg;c e' 

gi = (H;l)T gL(Hil) , GZ$ = (HR1)TgR(Hil) . 

The relevant anomaly factor for pi is therefore 

Tr gi = lim tr J d2k ,-ik.x 
E@i)ti3i 

M+m w2 M2 

(3.6a,b) 

(3.6c,d) 

1 eik.x 
3 (3.7) 

with a parallel expression for JIF;. (The symbol "tr" indicates a trace 

over the matrix indices.) The appearance of (9i)'gL rather than 

(GBi12 is dictated by the non-Hermiticity of 2~~ and (in general) of 

gi. (See appendix of Ref. 5.) 

We evaluate (3.7) for transformations with small off-diagonal 

entries. Specifically, if we write HL, HR as 

HL=( ;;, -tL), HR =( ;;, -tR), (3.8) 

we shall work to second order in the small real parameter Y. The results 

(see appendix C) are 

Tr gL = 2 [sLanEV - (1+AL) ie,,Va,,9 J 

ia 
Tr gR = 2 [aRapBp t titsR) i E,,,,avBvl 

(3.9a) 

(3.9b) 

where 
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(3.10) 

Repeating the argument of eq. (1.9), we compute the Minkowskian WTI's 

aLtaR <alljp> = 2n m <apBv> t 2n <cpya B > 
PV 

(3.11) 

"L-6R caVjg> = 2n <apB% t 2n 2+6L+6R <cpva B > 
1Iv - 

We see that use of the modified measure will yield a quantum theory 

which is not invariant under improper Lorentz transformations, unless we 

restrict ourselves to those measures for which 

6L = 6R . (3.12) 

Imposing (3.12), and defining 

,, = 1 - E = -6 = -6 
L R' (3.13) 

we obtain from (3.11) 

taVjn> = - i caVB% 

(3.14) 

ta jn> = : <cnvanBV> . 
115 

Choosing BP and S2 in (3.2) appropriate to the massless Thirring model 

(see appendix B), we obtain the desired Eqs. (1.2) for the case of 
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lnl<<l. 

The present results provide further confirmation of the correctness 

of Fujikawa's view of anomalies as the consequence of non-invariance of 

the path integral measure under a symmetry of the classical action. The 

family of two-dimensional measures may be of use in string theories, 

since strlng theories may be viewed as theories of fields living in two 

spacetime dimensions [12]. Work on explicit evaluation of the anomalies 

for general values of n is currently in progress. 
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APPENDIX A: NOTATION, CONVENTIONS, AND USEFUL FORMULAS 

Minkowski spacetime 

metric and alternating tensors; 

gpv = ( : -; ) Jo = + 1 

gamma matrices: 

To = a2 = ( g -1 ) $ = lo1 = ( 0 :, ) 

r5 = 7071 = 
a3 = ( : -; 1 

rprg = E pvY y 7PLIu = g PV- y5c”” 

current and pseudocurrent: 

jp = GYP* jg = G7’75* 

generating functional and action for Thirring model: 
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Z = [ ll d+(x) d$(x) eis 
X 

S = I d2x 
( 

i$t+ej'A,, - $ jpjp ) 

Euclidean spacetime 

metric and alternating tensors: 

gamma matrices: 

T1 = o1 = 
( 

75 = -irlY2 

c O) 92 
=tl Z-6 

01 EpV'Vr VT 

01 

10 ) 
‘2 = 02 =(p -;, 

=a3=(i -y, 

7 y5 = -iE = 6 
P pJ7v 7)lyv pv + i75C 

vv 

current and pseudocurrent: 

jl* = Trll* 
Jv P 
.5 = T7 75* 

j5 = -i E j 
v PV v 

generating functional and action for Thirring model: 
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Z = I ll de(x) d;(x) e-' 
X 

S = - j d2x ( f%We jpAp + $ $j,, ) 

Euclideanization procedure 

active transformations: (M = Minkowski spacetime 

E = Euclidean spacetime) 

0 
xM 

+ -ix 
2E A”M + iA2 

E 

substitutions: 

1 =x 
'M lE AIM E 

= Al 

O- 
'M - 72E 7; = iYl 

E 
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APPENDIX B: INTRODUCTION OF A LAGRANGE MULTIPLIER 

From appendlx A (In Minkowski spacetime): 

z = 1 II d*(x)&(x) exP 
X 

i J d2x(i?l++eJ"Ar - $ j"j,l 3 

where jr = $rp$. We may rewrite this as 

Z = J II d$(x)d$(x)dkn(x) II s(kn(x)-;(x)r$(x)] 
X X-P 

. exp 
C 

i J d2x(i$$+ek'An - $ v k kJl 
= J n dg(x)dG(x)dkn(x) 9 exp [I J d2x hn(kn-Grn$)] 

X 

f exp i J d2x i$Q+ek"A 
v 

- $ k"k 
P >I 

= J II d$(x)dy(x)dkn(x) q exp[i J d2x (is&-jnhn) 
X 

. exp i J d2x ekKAv+kPk 
v 

- $ kvk . 
P )I 

Upon continuation to Euclidean spacetime, this is of the form 

(3.2). 
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APPENDIX C: COMPUTATION OF Tr g'L 

From the definitions (2.4), (3.6), we find 

cq = -"z 
-2riaL siaL-rBL 

2r siaL+rBL &aL 

A 

where r = KdLFL, r = YciLiL, 
A A 

r = dLdL+u2hLFLr 
* 2 A and s = dLdL-r bL~L. 

To evaluate (3.7), we first perform the resealing kV + MkV, so 

Tr gi 
= lim tr M2 J d2k ,-iMk-x 

M-b w2 
SJi ew - 

E 

@ii,+i?3i 

M2 I 
eiMk.x 

Using ape 1Mk.x = ,iMk*x (aVtiMkV), we move eiMkex through to the 

left. This yields 

Tr gi = limtrM2 J 
M-+- 

where Q is the 2 x 2 matrix 
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Q= t; . 

4(r r)2 

n2kpkr 

I 
I 
I 2n*k k 
, PV 
I 

t i [-2iAk a 
I 
t 

PlJ I 

I 
I 

- ( r*stl,vts*rt&B,,k J ; -2(Fr*tpv+~*rt~y)~pk J 

t i-. [-ha a 
M2 VP 

, I t I- [-zn*a a 
b I 

M2 VP 
I 
I 

t ~(r*stvv+s*rt~y)Bpay \ t2i(~r*tpytr*rt;y)Bpay 
I , 
I 1 

t is*rt a B tr*rBpB,,] 
, 
; tZir*rt P” IJ v &?J 
I I ______-___--- __-- ________-_------- --------:---------------- I I 

2Rkllkp 
I 
I :2k,kp 
t 
I 
I 
, 

t i [-41Qk,,$, 
I 
I 
I 

t ; [-2iikvap 
I 
I 
, 

-2(rr*t~vt~rt~v)Bllku] i t(r*st pY+s*rt;v) B,,kJ 

I 

t I- [-ma a t I- [-;a a 
$ l’P ;M2” 

, 

t2i(rr*t~,t~rtty)B~a~ I -i~r*st~yts*rt~v)B~au 
1 I , I I 

t2<?rtrvapBv] I 
I 

-ls*rt~yarBYtr*rB~B~l 

, 
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We have defined t = 6 + ir 
WV PV vv 

and, to order k2, 

A0 = d;dL;i;;iL 

A2 = k2[4d*d .&*& -d*Tb ; -d ;i A*;*) LLLL LLLL LLLL 

z2 = ,2[47; &*; -d*y& ; -d 2 $*y) 
LLLL LLLL LLLL 

A = ho t A2 , ; = A0 + i2 

h-2 = 7s - rs* 

Every term in Q contains either a factor of K or l/M. Since we are 

working to order c2, and since any term with more than two powers 

of l/M will vanish in the limit M -f m, the expansion of e -Q yields 

a finite number of terms. Upon performing the expansion, 

kP-integration, and matrix trace, we obtain the result (3.9a). The 

corresponding computation of Tr gR gives (3.9b). 


